- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Jakobsson, Ellinor (3)
-
Obertegger, Ulrike (3)
-
Sharma, Sapna (3)
-
Culpepper, Joshua (2)
-
Hampton, Stephanie E (2)
-
Shchapov, Kirill (2)
-
Weyhenmeyer, Gesa A (2)
-
Woolway, R Iestyn (2)
-
Bansal, Sheel (1)
-
Block, Benjamin D. (1)
-
Carey, Cayelan C. (1)
-
Doubek, Jonathan P. (1)
-
Dugan, Hilary (1)
-
Erina, Oxana (1)
-
Fedorova, Irina (1)
-
Fischer, Janet M. (1)
-
Grinberga, Laura (1)
-
Grossart, Hans-Peter (1)
-
Jansen, Joachim (1)
-
Kangur, Külli (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Culpepper, Joshua; Jakobsson, Ellinor; Weyhenmeyer, Gesa A; Hampton, Stephanie E; Obertegger, Ulrike; Shchapov, Kirill; Woolway, R Iestyn; Sharma, Sapna (, Nature Reviews Earth & Environment)Ice phenology has shifted with anthropogenic warming such that many lakes are experiencing a shorter ice season. However, changes to ice quality — the ratio of black and white ice layers — remain little explored, despite relevance to lake physics, ecological function, human recreation and transportation. In this Review, we outline how ice quality is changing and discuss knock-on ecosystem service impacts. Although direct evidence is sparse, there are suggestions that ice quality is diminishing across the Northern Hemisphere, encompassing declining ice thickness, decreasing black ice and increasing white ice. These changes are projected to continue in the future, scaling with global temperature increases, and driving considerable impacts to related ecosystem services. Rising proportions of white ice will markedly reduce bearing strength, implying more dangerous conditions for transportation (limiting operational use of many winter roads) and recreation (increasing the risk of fatal spring-time drownings). Shifts from black to white ice conditions will further reduce the amount of light reaching the water column, minimizing primary production, and altering community composition to favour motile and mixotrophic species; these changes will affect higher trophic levels, including diminished food quantity for zooplankton and fish, with potential developmental consequences. Reliable and translatable in situ sampling methods to assess and predict spatiotemporal variations in ice quality are urgently needed.more » « less
-
Weyhenmeyer, Gesa A.; Obertegger, Ulrike; Rudebeck, Hugo; Jakobsson, Ellinor; Jansen, Joachim; Zdorovennova, Galina; Bansal, Sheel; Block, Benjamin D.; Carey, Cayelan C.; Doubek, Jonathan P.; et al (, Nature Communications)Abstract The quality of lake ice is of uppermost importance for ice safety and under-ice ecology, but its temporal and spatial variability is largely unknown. Here we conducted a coordinated lake ice quality sampling campaign across the Northern Hemisphere during one of the warmest winters since 1880 and show that lake ice during 2020/2021 commonly consisted of unstable white ice, at times contributing up to 100% to the total ice thickness. We observed that white ice increased over the winter season, becoming thickest and constituting the largest proportion of the ice layer towards the end of the ice cover season when fatal winter drownings occur most often and light limits the growth and reproduction of primary producers. We attribute the dominance of white ice before ice-off to air temperatures varying around the freezing point, a condition which occurs more frequently during warmer winters. Thus, under continued global warming, the prevalence of white ice is likely to substantially increase during the critical period before ice-off, for which we adjusted commonly used equations for human ice safety and light transmittance through ice.more » « less
An official website of the United States government
